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Nemato-capillarity theory and the orientation-induced

Marangoni ¯ ow
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Montreal, Quebec, Canada H3A 2B2; e-mail: inaf@musicb.mcgill.ca

(Received 8 January 1999; accepted 13 January 1999 )

The macroscopic equations of nemato-capillarity, including the interfacial linear momentum
balance equation and the interfacial director torque balance equation, are presented. The
interfacial linear momentum balance equation for isotropic ¯ uid± nematic liquid crystals
involves the surface divergence of the surface stress tensor. It is shown that the surface stress
tensor for isotropic ¯ uid± nematic interfaces is, in most cases of interest, dominated by elastic
modes. It is found that the anisotropic elastic contribution to the surface stress tensor gives
rise to bending stresses, not observed in interfaces between isotropic ¯ uids. In addition it is
found that the anisotropic contribution to the surface elasticity also gives rise to tangential
forces. Thus when the director orientation deviates from the easy axis of an isotropic ¯ uid±
nematic interface and the deviation has surface gradients, an orientation-driven Marangoni
¯ ow can exist. The strength of this novel e� ect is proportional to the anchoring energy of the
interface, and the direction of ¯ ow is from low energy regions towards high energy regions,
that is, from regions where the director is aligned along the easy axis towards regions where
the director deviates from the easy axis.

1. Introduction as well as the presence of surface ¯ ows (tangential
stress equations). In these two boundary conditions theCapillary hydrodynamics in isotropic ¯ uids is con-

cerned with ¯ uid ¯ ow phenomena in which interfacial term that balances the stresses in the bulk phases is
the surface divergence of the surface stress tensor. As atension is a signi® cant e� ect [1] . The two important

cases are ¯ ows with interfaces of ® nite curvature and consequence the surface stress tensor itself must describe
the necessary deformation modes. There are many con-with spatial gradients in the interfacial tension. For

example, spatial gradients in the surface tension at the stitutive equations for the surface stress tensor such as
elastic, viscoelastic, viscoplastic, etc [3] . Almost alwaysfree surface of isotropic viscous ¯ uids create a surface

shear stress that can only be balanced by shear ¯ ow in the surface stress tensor is a 2 Ö 2 symmetric tensor with
normal elastic stress components and shear viscous stressthe adjacent surface layers. The general phenomenon

is known as Marangoni ¯ ow and the surface tension components [4] . On the other hand, bending stresses
are not present in isotropic ¯ uids [4] . The presence ofgradients driving the ¯ ow can be caused by temperature

gradients (thermocapillary ¯ ows), surface concentration nematic ordering introduces anisotropic viscoelastic
behaviour in the bulk nematic phase as well as aniso-gradients (di� usocapillary ¯ ows), and electric charges

(electrocapillary ¯ ows) [1, 2] . Applications of viscous tropic elastic modes in the interface of a nematic liquid
crystal and an isotropic ¯ uid. It will be shown below¯ ows driven by tangential stress caused by gradients in

surface tensions are found in ¯ ow in porous media, that the anisotropic surface elasticity of nematic liquid
crystals introduces bending stresses not found in inter-damping of capillary waves, cleavage of biological cells,

to name a few. faces between isotropic ¯ uids. Thus the conventional
stress interface stress balance equations that are theAt the macroscopic level the theoretical framework

to describe capillary hydrodynamics of isotropic ¯ uids foundations of capillary hydrodynamics [1, 3] need to
be augmented with the nematic anisotropic viscoelasticconsists of the balance equations of mass, energy and

momentum, and the necessary boundary conditions modes.
Nematic liquid crystals are known to have a componentincluding the interfacial stress balance conditions, and

the interface velocity conditions [3] . The interfacial of the surface tension that is orientation dependent
[5] . A very well known expression that describes thisstress boundary conditions play a foundational role in

capillary hydrodynamics since they are involved in deter- property is the Rapini± Papoular surface free energy,
which is widely used in the liquid crystals research ® eldmining the shape (normal stress equation) of the interface

Journal of L iquid Crystals ISSN 0267-8292 print/ISSN 1366-5855 online Ñ 1999 Taylor & Francis Ltd
http://www.tandf.co.uk/JNLS/ lct.htm

http://www.taylorandfrancis.com/JNLS/ lct.htm

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



914 A. D. Rey

[6] . As shown below, nematic liquid crystals will also where k is the unit normal directed from the (Õ ) phase
towards the (+) phase, t Ô is the total stress tensor inexhibit surface tension driven ¯ ow caused by tangential

stresses that appear due to tangential surface orientation the two (Ô ) bulk phases, = s = Is ¯ = is the surface gradient
operator, Is = I Õ kk is the surface idem factor, and t

s isgradients. A novel phenomenon, the orientation-driven
Marangoni ¯ ow, may thus appear only in the presence the elastic surface stress tensor. The stress tensor in the

isotropic bulk phase (+) is given by:of weak anchoring, whenever the surface director orien-
tation deviates from the easy axis of the surface. As in

t+= Õ p+I = 2g+D+ (2)other Marangoni ¯ ows, the e� ect is important when
the gradients in surface tension are comparable to the where p+ is the pressure, g+ the shear viscosity, D+=
characteristic kinetic energy density. (= v++ = v+T)/2 is the deformation rate tensor and where

The objectives of this paper are (1) to present the the superscript T denotes the transpose. The stress tensor
interfacial stress balance equations of capillary nemato- in the nematic phase (Õ ) is given by [7] :
dynamics, and (2) to use the tangential stress balance
equation of nematocapillarity to describe the orientation-

t Õ = Õ p Õ I Õ
qF b

q = n
¯ = n

T+a1 D Õ : nnnn +a2 nN Õinduced Marangoni ¯ ow that arises in the presence of a
nematic free surface or isotropic ¯ uid± nematic interface.

+a3 N Õ n +a4 D Õ +a5 nn ¯ D Õ +a6 D Õ ¯ nnThe main purpose of this paper is to present a new liquid
crystal phenomenon that may have useful applications (3)
in material characterization and product use. To avoid

where the {ai}; i = 1, ¼ , 6, are the Leslie viscositylengthy repetitions of the well-known equations of
coe� cients, N Õ = dn/dt Õ W Õ ¯ n the director’s Jaumannematodynamics in the bulk the reader is referred to
derivative, W Õ = (= v Õ Õ = v Õ

T)/2 the vorticity tensor inChapter 5 of [7] .
the nematic phase, F b is the bulk Frank free energyThe organization of this paper is as follows. Section 2
density [5, 7] given by:presents a derivation of the interface stress boundary

balance equations and the surface stress tensor for a
2F b= K 11 (div n)

2 +K 22 (n ¯ curl n)
2 +K 33 |n Ö curl n|2

nematic liquid crystal in contact with an isotropic
+ (K 22 Õ K 24 )(tr(= n)

2 Õ (div n)
2
) (4)¯ uid. Section 3 derives the tangential surface force for

a nematic± isotropic ¯ uid interface and gives a simple
and the Frank constants {K ii}; ii = 11, 22, 33, 24, are theexample of the orientation driven Marangoni ¯ ow.
elastic moduli for splay, twist, bend and saddle± splaySection 4 presents the conclusions.
deformations, respectively.

The surface stress tensor t
s is given by the sum of the

2. Capillary nematodynamics equation elastic t
se and the viscous t

sv contributions. The surface
2.1. Interfacial balance equations elastic stress tensor is given by [8, 9] :

In this section we present the interfacial transport
t
se= F s Is Õ F ¾sIs ¯ nk (5 a)equations for an interphase between an isotropic viscous

¯ uid and a uniaxial rod-like nematic liquid crystal of
constant order parameter [7] . The system is isothermal, F ¾s =

dF s

d(n ¯ k)
(5 b)

and both phases are incompressible. The interphase is
assumed to be viscoelastic. where F s is the surface free energy density, here taken

Assume that a nematic liquid crystal is undergoing to be a function of n ¯ k. An example of a widely use
¯ ow with velocity v Õ and director n in region RÕ , and constitutive equation for F s is the Rapini± Papoular
that an isotropic viscous ¯ uid is undergoing ¯ ow with expression [5, 6] :
velocity v+ in region R+. The interface between the

F s = s[1 +t(n ¯ k)
2 ] (6)two regions is characterized by a unit normal k, directed

from RÕ into R+. The ¯ ow in both regions satis® es
where s is the isotropic interfacial tension and sa = stthe continuity equation and the momentum balance
is the anchoring energy [6, 7] . The surface elastic stressequation. In addition, in RÕ the liquid crystal satis® es
tensor t

se can be expressed as:the director torque balance equation. The kinematical
interfacial boundary conditions are that the velocities t

se= F s Is Õ F ¾s (n ¯ k)[i1 k + i2 k] (7)
are continuous: v Õ = v+. The dynamical boundary con-

where (i1 , i2 ) are the surface unit orthonormal baseditions are expressed by the interfacial linear momentum
vectors. In component form t

se is given as:balance equations given by [3] :

Õ k ¯ (t+ Õ t Õ )= = s ¯ t
s (1) t

se= i1 i1 t
se
11 + i2 i2 t

es
22 + i1 kt

se
13 + i2 kt

se
23 . (8)
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915Nemato-capillar ity and Marangoni ¯ ow

The surface elastic stress tensor contains the usual viscous stress tensor and molecular ® elds are given by:
normal stresses (components 11 and 22) and surface
bending stresses (components 13 and 23). These bending t

ssv= a
s
1 D

s
: ndndndnd+

1

2
(a

s
2 +a

s
3 )(Ndnd+ndNd)

stresses are usually absent in ¯ uids systems [4] but for
nematics they arise when the surface orientation deviates

+a
s
4 D

s+
1

2
(a

s
5 +a

s
6 )(D

s ¯ ndnd+ndnd¯ D
s
)from the easy axis. The magnitude of bending stresses

is:
(16 a)

t
se
13 = Õ F ¾s (i1 ¯ K ); t

se
23 = Õ F ¾s (i2 ¯ K )(3a,b) (9)

h
vd= c

s
2 D

s ¯ nd+ c
s
1 Nd (16 b)

Equation (8) shows that for a nematic liquid crystal in
the presence of weak anchoring t

se is asymmetric and h
v)= c

s
1
dn)

dt
(16 c)

possesses at most four components. It is worth observing
that including higher order terms in the classical Rapini± where the {a

s
i }; i= 1, ¼ , 6, are the surface viscosity

Papoular expression (6) will not modify the tensor coe� cients, with units of energy Ö time/area, and the
structure of t

se. {c
s
i }; i = 1, 2 are the torque coe� cients, with units of

To ® nd an expression for the surface extra stress energyÖ time/area, and due to Onsager reciprocal relations
tensor t

sv = t
ssv+ t

sav we identify the forces and ¯ uxes the coe� cients are related as follows: c
s
1 = a

s
3 Õ a

s
2 ,

that contribute to the surface rate of entropy production c
s
2 = a

s
3 +a

s
2 = a

s
6 +a

s
5 , as found in the bulk case [7] .

D , as follows: The antisymmetric surface viscous stress tensor is given
by: t

sav = (hvdnd Õ ndh
vd)/2.

D = t
ssv

: D
s+ t

sav
: W

s+h
vd¯

dnd

dt
+h

v)¯
dn)

dt
(10) Finally the interfacial director torque balance equation

is given by the balance of the surface elastic torque C
se

and the surface viscous torque C
sv :where t

ssv is the surface symmetric extra stress tensor,
D

s is the surface rate of deformation tensor,
C

se+ C
sv = 0 (17 a)

2D
s= (= v

s ¯ Is+Is = v
sT

) (11)
C

se= n Ö h
se

; C
sv = Õ n Ö (h

vd+h
v) ) (17 b,c)

where v
s is the surface velocity vector, t

sav is the surface where the surface elastic molecular ® eld h
se is given by

asymmetric extra stress tensor, W
s is the surface vorticity [5, 8] :

tensor,

h
se
i = Õ

qF s

qn i
Õ

qF b

qn i, j
kj (18)2W

s = (= v
s ¯ Is Õ Is ¯ = v

sT
) (12)

where h
vd is the parallel component of the surface viscous The relative ratio of the characteristic viscous stresses

molecular ® eld, dnd/dt is the total derivative of the to elastic stresses and the relative ratio of the characteristic
parallel director component, viscous torques to elastic torques, gives, respectively:

dnd

dt
=

qnd

qt
+ v

s ¯ = s nd; nd= Is ¯ n (13 a,b) d t
sv d

d t
se d

= Ca
h

L
; Ca =

a4 U

s
(19 a)

where h
v) is the normal component of the surface viscous d h

sv d

d h
se d

= E r
h

L
; E r =

c1 U

sa
(19 b)molecular ® eld, dn)/dt

s is the total derivative of the
normal director component, and

where Ca is the capillary number, E r the surface Ericksen
number, sa is the anchoring energy, U is a characteristicdn)

dt
=

qn)

qt
+ v

s ¯ = s n) ; n)= kk ¯ n. (14 a,b)
velocity, L is a characteristic macroscopic length, and h

is the microscopic thickness of the surface layer. TheExpressing t
sav in terms of the parallel components of

value of h is of the order 10Õ
8 ± 10Õ

9 m [10] . Thus forthe molecular ® eld and director, D becomes
most practical applications:

D = t
ssv

: D
s+h

vd¯ Nd+h
v) ¯

dn)

dt
; Nd=

dnd

dt
Õ W

s ¯ nd. d t
sv d

d t
se d

= Ca
h

L
%1;

d h
sv d

d h
se d

= E r
h

L
%1 (20 a,b)

(15)
and the interface can be considered to be purely elastic.
In such cases we can neglect the surface viscous stressesExpanding the ¯ uxes (tssv, h

vd, h
v)) in terms of the forces

(D s, Nd, dn) /dt ) we ® nd that the symmetric surface and torques, h
sv= t

sv = 0.
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916 A. D. Rey

2.2. Normal and tangential force balances As a simple example of this novel phenomenon,
consider a nematic free standing ® lm with a splay±The normal force balance equation re¯ ects the shape

e� ects of the interface and involves the role of surface bend inversion wall [7] along the z-direction due to
an imposed magnetic ® eld along the x-direction:tension due to surface curvature e� ects. It is obtained

by projecting the vector equation (2) along the unit H = (H , 0, 0). The director ® eld is assumed to be given
by n = [sin a(x ), 0, cos a(x )] . The easy axis and the out-normal k:
ward unit normal are along z: k = (0, 0, 1). At the centre

Õ k ¯ (t+ Õ t Õ )¯ kk of the wall (x = 0) the director is along the easy axis
(a= 0), and su� ciently far (x � Ô 2 ) from the centre= F s[2H ]k +F ¾s[kk : = s n

T Õ = s ¯ n Õ 2H (n ¯ k)]k

of the inversion wall the director is aligned along the
Õ F ²

s [kn : = s n +nn : = s k]k + = s ¯ t
sv ¯ kk (21) magnetic ® eld (a= Ô p/2). The tangential force is in

the x-direction and is given by:where H is the mean surface curvature: H = Õ 1/2 = s ¯ k.
In the absence of ¯ ow the equation reduces to the static
normal force balance equation that can be considered f

dx= s|t| sin(2a)
da

dx
(25)

as the Laplace equation for nematic± isotropic systems.
The tangential force balance equation involves gradients showing that the ¯ ow is from the low energy (x = 0)
in the surfance free energy density and is obtained by region to the high energy regions (x � Ô 2 ), as in all
projecting equation (2) along the tangent direction: Marangoni ¯ ows. The magnitude of the ¯ ow will be

proportional to the surface anchoring energy s|t|, whereÕ k ¯ (t+ Õ t Õ )¯ Is = F ¾s[k ¯ = s n
T] ¯ Is+ = s t

sv ¯ Is
t is a negative constant for homeotropic anchoring.

(22)

4. Conclusionswhere the ® rst term on the right hand side is the
The interfacial stress balance equation for liquidtangential force due to surface orientation gradients.

crystals involves the surface divergence of the surface
stress tensor. For many common cases the surface stress

3. Orientation-induced Marangoni ¯ ow tensor can be considered purely elastic. The anisotropic
In capillary hydrodynamics the e� ect produced by elastic contribution to the surface stress tensor gives rise

tangential forces due to interfacial tension gradients is to bending stresses, not observed in isotropic materials.
known as the Marangoni e� ect [1, 2, 3] . The Marangoni The anisotropic contribution to the surface elasticity
¯ ows are known as thermocapillary (thermal gradients), also gives rise to tangential forces. Thus when the
difussocapillary (concentration gradients) and electro- director orientation deviates from the easy axis of an
capillary (electric charge gradients) ¯ ows. To this list isotropic ¯ uid± nematic interface and the deviation has
one may add nematocapillary ¯ ows, which are ¯ ows surface gradients, an orientation-driven Marangoni ¯ ow
driven by orientation gradients. The orientation-induced can exist. The strength of the e� ect is proportional to
Marangoni e� ect for nematic liquid crystals is given by the anchoring energy characteristic of the interface, and
the following tangential force: the direction of ¯ ow is from low energy regions towards

high energy regions, that is, from regions where thef
d
= F ¾s[k ¯ = s n

T] ¯ Is . (23)
director is aligned along the easy axis towards regions

For the Rapini± Papoular constitutive equation (6) the where the director deviates from the easy axis.
tangential force f

d becomes:

Financial support of the Natural Sciences andf
d
= 2st(n ¯ k)(k ¯ = s n

T
)¯ Is . (24)
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